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摘要 

由於高競爭性之易腐性產品經常面對相當程度起伏波動的市場需求，使得零售商

的獲利性往往受到不利衝擊。鑑於此一情況，供應商目前已建立多種主要基於實現通

路合作與風險分擔之政策，以之做為有效工具來減輕需求不確定風險，如此將極可能

有助於增進整體通路利益。其中一種政策為供應商承諾零售商許可限量退回及提供限

量備援存貨，藉以激勵零售商下訂更多訂單作為回報。此一互利合作政策對於未售出

單元之殘值通常所剩無多的易腐性商品而言尤其具備價值性與必要性。為了達成此一

目的，本研究延伸傳統之報童模型（Newsvendor model）以併入該一具對數常態隨機

性需求之易腐性商品的限量退回與備援政策。經過周詳推導之後，本研究最終發展出

一有效與實用的訂購模型，可用以最佳化訂購數量與最大化零售商的預期利潤，透過

數值實例，本研究實證展示所發展之最佳訂購模型的可行性與效益性。 
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ABSTRACT 

Competitive perishable items frequently face such sizably volatile market demand that 

retailer profitability is frequently unfavorably impacted. Accordingly, suppliers have 

presently created various policies, which are primarily based on carrying out channel 

coordination and risk sharing, to serve as effective instruments to ease the risk of demand 

uncertainty and thus potentially help improve overall channel benefits. One such policy is 

for suppliers to make commitments to retailers to permit limited returns and provide a 

limited backup inventory to incentivize retailers to place more orders in return. This 

coordinated policy is especially valuable and necessary for perishable items because the 

salvage value remaining on unsold units is often trivial. To this end, this study extends a 

classical newsvendor model to incorporate the limited returns and backup policy for a 

given perishable item with lognormal stochastic demand. Following a comprehensive 

deduction, an effective and practical ordering model is finally developed to optimize order 

quantity and maximize retailer expected profits. By means of a numerical example, this 

study demonstrates the workability and effectiveness of the developed optimal ordering 

model. 

Keywords: Inventory Control, Newsvendor Model, Returns and Backup Policy, Perishable 

Items, Lognormal Stochastic Demand 

1. Introduction 

This study considers a supply chain that involves a supplier-retailer distribution 

channel for perishable items, which generally are characterized by a definite demand life, 

with examples including electronic components, fashion goods, foodstuffs, beverages, 

pharmaceuticals, chemicals, printed materials, etc. This study assumes that the retailer 

places a single-period order to purchase a quantity that matches the expected demand for a 

given perishable item during the upcoming selling season. However, when market demand 

for the given perishable item is variable and volatile, it is likely subject to a substantial 

difference between actual and expected demand, and thus to cause sizable losses for 

retailers. Accordingly, the concept and devices of channel coordination are launched to 

share business risk among enterprise partners, maintain long-term relationships and 

enhance overall supply chain advantages. Suppliers may also benefit from channel 
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coordination to improve customer satisfaction, expand market share, and encourage 

retailers to purchase and sell items more actively owing to lower risk exposure. Members 

within a supply chain thus can share the risks and costs of demand uncertainty and boost 

profitability by way of channel coordination. 

Among others, the returns and backup policy can be regarded as an effective 

mechanism to achieve channel coordination and risk sharing. Naturally, the limited returns 

and backup policy implies flexible supply arrangement. A returns policy refers to the 

supplier having a commitment to the retailer to buy back unsold units at the end of the 

selling season at a pre-agreed price. Presumably, this policy is especially valuable for 

perishable items given that unsold units often have trivial salvage value. On the other 

hand, a backup policy refers to the commitment of the supplier to retailers to readily 

replenish units for which a shortage exists at the end of the selling season for a certain 

additional charge. Generally, suppliers are only ready to promise limited returns and 

backup quantities owing to fear of assuming excessive risk. This study differs from 

previous researches by focusing on extending the classical newsvendor model to develop 

an optimal ordering model for retailers of a given perishable item where a limited returns 

and backup commitment by the supplier is considered and lognormal stochastic demand is 

assumed. 

A pioneering study of returns policy by Pasternack (1985) asserted that manufacturers 

can achieve channel coordination with retailers by adjusting wholesale price and 

permissible returns, and thus mitigate double marginalization and increase supply chain 

joint profits. This conclusion was also endorsed by Padmanabhan and Png (1995). 

Subsequently, extensions and variations introduced exclusive returns policies to supply 

chain systems with a view to examining changes in supply chain profits given policy 

adoption. For example, Marvel and Peck (1995)；Emmons and Gilbert (1998)；Lee (2001), 

and others examined returns policies using a single-period model of returns. Furthermore, 

Lau and Lau (1999)；Webster and Weng (2000) attempted to modify the model to include 

different risk preferences and tolerances with regard to unexpected changes in market 

demand among channel members. 

Padmanabhan and Png (1997) looked into returns policy in a non-newsvendor 

framework and demonstrated that it favors manufacturers by simulating retail competition. 

Mantrala and Raman (1999) employed the traditional “newsvendor problem” modeling 

framework to investigate returns policy by considering a situation where a supplier faces a 
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retailer with multiple store outlets. Donohue (2000) discussed returns policy where a 

manufacturer can deliver a second production batch following an updated sales forecast. 

Additionally, Tsay (2001) compared returns policy against a markdown allowance policy. 

Taylor (2001) analyzed channel coordination in a two-period and declining price context 

and for three channel policies, including wholesale price protection, midlife returns and 

end-of-life returns, to determine how these policies are coupled together so as to optimize 

channel coordination. Hahn, Hwang, and Shinn (2004) dealt with retailer operating 

policies for a perishable product in a situation in which a retailer agrees with their supplier 

not to return unsold product provided the supplier offers a discount on the wholesale price.  

Chen and Bell (2011) examined the potential impact of returns on these two decisions 

including ordering quantity of retailer and wholesale price of manufacturer, and expected 

profits of both manufacturer and retailer for a single-period product with stochastic 

demand. Lee and Rhee (2007) examined returns policy in a newsvendor framework and 

assumed both supplier and retailer to have limited and stochastic salvage capacities. 

Pasternack (2008) demonstrated that a pricing and returns policy in which a manufacturer 

offers retailers a partial credit for all unsold items can achieve channel coordination in a 

multi-retailer environment. Li, Xu, and Li (2013) devised a number of study models to 

look at the impact of return policy, product quality and pricing strategy of an online 

distributor on these two decisions including customer purchase and return. Gümüs, Ray, 

Yin, and Yin (2013) investigated the role played by consumer valuation of used durable 

products in shaping the incentive of a manufacturer to proffer retailer a returns option 

acting as the channel equilibrium strategy when used goods might be devaluated owing to 

physical deterioration (or obsolescence). Hu, Li, and Govindan (2014) considered a 

consignment contract that allows consumers to return non-defective products and 

compared the difference between vendor and retailer managed consignment inventory with 

and without return policy. Parvini, Atashi, Husseini, and Esfahanipour (2014) studied the 

effects of returns policy for a reusable product on inventory policy of all parties involved 

in a supply chain by incorporating both manufacturing and remanufacturing processes into 

the extended inventory model. 

Various studies have also examined backup policies. Eppen and Iyer (1997) developed 

the concept of backup agreement contract, which involves two main parameters: 

reservation rate and penalty cost. An optimal buyer purchase policy was derived in their 

study by setting up a two-period dynamic programming model. Kouvelis and Li (2008) 

investigated the optimal replenishment cycles and the effectiveness and practicability of 
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the backup supplier for a given product with the constant rate demand and stochastic lead 

time. Bassok and Anupindi (1997) analyzed a single-production periodic review inventory 

system with a minimum quantity commitment that optimized buyer inventory policy and 

purchase decision. Hou, Zeng, and Zhao (2010) ( studied a buyback policy committed from 

backup supplier to cover situations where the supplier is subject to disruptions. Meantime, 

the uncertainties of demand and recurrent supply are explored to find the expected profit 

functions and optimal decisions of both buyer and supplier.  

Besides, high market volatility in numerous industries is becoming increasingly 

familiar owing to intense competition, fickle consumer preferences, and rapid variations in 

product and processing technology. Consequently, market demand for perishable items 

considered here is also assumed to be subject to uncertainty and random volatility, 

implying it is probabilistic. Recent studies involving the newsvendor-type inventory model 

thus have extensively analyzed the role of probabilistic random demand. Furthermore, 

most probabilistic demand-related studies have adopted independent normal demand for 

each time period. Based on their analytical models, Bagchi and Hayya (1984)；Bagchi, 

Hayya, and Ord (1984)；Silver, Pycke, and Peterson (1998)；Mantrala and Raman (1999)；

Tang, Rajaram, and Alptekinoglu (2004)；McCardle, Rajaram, and Tang (2004)；Chen and 

Chen (2009, 2010)；Jha and Shanker (2013) assumed normally distributed demand. Using a 

continuous demand variable for a given product following a normal distribution appears 

plausible since market demand is frequently aggregated from numerous individual 

demands (especially for perishable items) and hence reaches sufficient mass to satisfy the 

central limit theorem.  

Nevertheless, normal distribution remains a questionable proxy for demand 

distribution since demand cannot be negative. Bartezzaghi, Verganti, and Zotteri (1999) 

asserted that, where relevant, a distribution should be sought if its field is only defined for 

non-negative values. The lognormal distribution can be treated as a more realistic and 

acceptable alternative to normal distribution because it results in a normal distribution 

after the logarithmic operation. A variable with a lognormal distribution can have any 

value between zero and infinity. This study thus assumes that market demand for 

perishable items following a lognormal probability distribution should be theoretically 

acceptable and sustainable. Notably, Benavides, Amram, and Kulatilaka (1999)；Huang, 

Chang, and Chou (2008) also supported the lognormal distribution, while using it to 

analyze demand forecasting problems in manufacturing. 
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As mentioned previously, this study endeavors to develop an optimal ordering model 

for retailers of perishable items facing volatile market demand during a single period. 

Meantime, the supplier adopts a limited returns and backup policy. The developed optimal 

ordering model can help retailers optimize order quantity of a given perishable item during 

the upcoming selling season to maximize expected profit. Moreover, this study conceives 

of a practicable returns and backup policy to realize channel coordination, which can 

improve retailer profitability and increase supplier market share. Importantly, because 

sharing of demand uncertainty and promotion of overall channel benefits are both 

advantageous, the limited returns and backup policy represents a useful instrument for 

channel coordination. 

2. Model Development 

2.1 Modeling Demand Forecast 

As stated earlier, this study applies the Ito process to capture the demand shift via the 

corresponding continuous-time differential equation. The Ito process is a stochastic process 

that possesses the Markov property and comprises a permanent component of regular drift 

accounting for predictable long-term trends and a temporary component of random diffusion 

accounting for unpredictable stochastic volatility. Let tD  denote demand quantity during 

period t for a given newsvendor-style perishable item. The Ito process for stochastic variable 

tD  can be expressed algebraically as  

( , ) ( , )t t t tdD D t dt D t dz     （1） 

In Eq. (1), the stochastic diffusion equation ),( tDt  represents the regular drift 

component, and ),( tDt  represents the random diffusion component. Furthermore, 

variable tz  is assumed to satisfy the standard Wiener process, and its volatility can be 

expressed as  ddz tt   where t  is a standard normal stochastic variable, and d  

represents a given small time interval.  

If the diffusion component is approximately stationary (independent of time), a 

condition that is expected to hold for the demand process of a typical commodity over a 

relatively finite time horizon, it can acquire a specific form ( , )t tD t D  and 

( , )t tD t D  . The parameters   and   represent expected demand growth and the 
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standard deviation of that growth, respectively, and both are constant for all time periods. 

Eq. (1) can then be reformulated as follows:  

t t t td D D d t D d z   , or 

t
t

t

d D
d t d z

D
   . （2） 

Assume tD  is a lognormally distributed variable. Let tt DtDff ln),(  , and the 

following consequence can then be derived by applying Taylor expansion with respect to f, 

and Eq. (2) 

 

2
2 2

2 2

2
2

1 1( ) ( ) ... ( ) ...
2 2

1 ( )
2

t
t t t

t t t t

t t
t

df d f dD
df dD dD dD

dD dD D D

dt dz dD
D

 

     

  
 （3） 

By doing Euler discretization manipulation about Eq. (3); the following discrete-time 

model can be obtained. 
















  ttDDt  2

0 2

1
exp , （4） 

where 

t = length of time period, 

 = expected annual demand growth rate, 

 = standard deviation of demand growth rate,  

 = a standard normal stochastic variable; that is, )1,0(~ N . 

Eq. (4) shows that the expected value and variance of tDln  are  

  tDDE t 




  2/lnln 2

0   and   tDVar t
2ln  , respectively. 

2.2 Formulating Ordering Model  

Definitions of symbols for the analytical model are given below. 

T = length of selling period for a given perishable item, 

p = unit selling price (retail price) for a given perishable item, 

c = unit purchasing cost (wholesale price) for a given perishable item, 
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s = unit salvage value for a given perishable item )( cs  , 

v = unit shortage cost for a given perishable item )( cpv  , 

D= demand quantity during the upcoming selling period for a given perishable item,  

Do= actual demand quantity during the previous selling period for a given perishable item, 

M= returns limit for a given perishable item, 

N= backup inventory limit for a given perishable item, 

r = unit refund on returns for a given perishable item )( cr  , 

b = unit premium on backup inventory for a given perishable item )( cpb  . 

In the case of returns and backup policy, the refund on returns can be considered as 

additional revenue to compensate for the loss of retailer when the supply exceeds the 

demand, while the premium on backup inventory considered as an additional cost when the 

backup agreement is activated. Both unit refund and premium are assumed as a known and 

constant parameter in the presented ordering model because they are generally determined 

in practice through a negotiation between supplier and retailer.  

Let Q  represent order quantity during the upcoming selling period given a limited 

returns and backup policy, respectively. Expressed formally, the profit function during the 

upcoming selling period for the retailer in the typical newsvendor model depends 

principally on demand and order quantity, and can be formulated as follows:  

 

 









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alternatively, 
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 （5） 

Retailer expected profit is then derived from Eq. (5) and rendered as follows: 
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Through properly merging, it turns out that 
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. （6） 

As stated above, the demand during a specified selling period for a given perishable 

item is assumed to be lognormally distributed. The probability density function of the 

demand variable thus can be expressed as Eq. (7): 

 2
2

l n [ l n ]

21 1( )
2

D E D

Tf D e
D T



 

 

 . （7） 

Eq. (6) thus can be worked out by first separately solving the eight underlying 

components embraced in the equation, as detailed below, followed by properly linking 

these components to recover the original expressions.  

a. 

Q

dDDf )(  and 

NQ

dDDf )(  

This component can be algebraically obtained as follows: 

  2

2

ln [ln ]

21 1( )
2

D E D

T

Q Q
f D dD e dD

D T



 

  
       . （8） 

Let sD ln , sDE )(ln  and uT  ; Eq. (8) can then be transformed into the 

following expression. 
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Furthermore, if
 
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  through differentiation. The lower 

bound of the integral for w is accordingly transformed as Eq. (10): 
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Again, after applying dw and the lower bound of the integral for w in Eq. (9), the 

expression can be reformulated as 
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where function N(.) denotes the cumulative probability function for a standardized normal 

variable. 

Likewise, the following expression can be calculated via the same procedure. 
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The component can be deduced through a similar technique. First, the component can 

be expanded as Eq. (13): 
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The integral can be obtained via the same procedure used for component (1): 
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lower bound of the integral for y is transformed as Eq. (15):  
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Including dy  and the lower bound of the integral for y in Eq. (14) yields the 

following equation: 
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Similarly, the following expressed can be obtained by following the deductive 

procedure mentioned-above.  
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Because the deduction of this component closely resembles that for component (1), 

the specific procedure is not detailed here. The following close-form formula is also 

identified: 
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This component is identified as well much like component (2). Thus, only the final 

outcome is rendered, as follows: 
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By applying the results of Eqs. (11), (12), (16), (17), (18), (19), (20) and (21) in Eq. 

(6), the expected retailer profit can be rewritten as Eq. (22). 
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Theorem. The optimal ordering model developed can work out one and only one optimal 

solution known as concavity. 

Proof. Taking the first derivative of ][RE  with respect to order quantity Q  reveals that 
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the concavity can thus be verified through Eq. (24). 
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2.3 Estimating Model Parameters 

The expected growth rate of demand   and standard deviation of growth rate   in 

Eq. (3) can be estimated using the sample estimates ̂  and ̂ , based on historical 

demand data. This study introduces a straightforward and practical estimate. Assuming a 

sample of demand data covering N time periods, that is, NDDD ,...,, 21 , where each period 

lasts  , for considered perishable item, the logarithmic growth rate of demand tr  for 

the demand time series during period t is as Eq. (25): 
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Additionally, rt, 2,3,...,t N  all share an independent and identical normal 

distribution with mean r  and standard deviation s . Accordingly, estimates ̂  and ̂  

can be calculated as Eqs. (26) and (27): 
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3. Numerical Experiment 

This section outlines a numerical example demonstrating the proposed analytical model 

for optimizing order quantity to maximize retailer expected profit. The model parameters 

required in the numerical example are arranged for hypothetical perishable items, and a 

corresponding value set is designed that comprises ( 0 , , , , , , , , , , ,D T p c s v M N r b  ) = (10,000, 

0.25, 0.3, 0.5, $500, $300, $50, $300, 2500, 2000, $200, $100). The optimal order quantity 

and maximal expected profit for the above parameter settings using the presented analytical 

method and a numerical solution procedure offered by MS-Excel are solved as 11,823 units 

and $1,931,763, respectively.  
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To examine and verify the concavity, Table 1 lists the resulting expected profits given 

various assumed order quantities, ranging from 6,000 to 17,000 units in increments of 500 

units, as well as the optimal order quantity found in this experiment. For visibility purposes, 

Fig. 1 also illustrates that expected profit varies with order quantity. The variability curve 

demonstrates that expected profit is clearly concave, and first increases then decreases with 

increases in order quantity. Meanwhile, expected profit peaks at $1,931,763, which occurs 

with an order size of 11,823 units, consistent with the solution above. Subsequently, 

expected profit increases with order quantity. 

Subsequently, this study conducts sensitivity analysis of core parameters, namely 

demand growth rate, demand volatility, returns limit, backup inventory limit, returns 

refund and backup charge. The aim is to clarify variation in total expected profits with 

changes in these parameters.  

3.1 Demand growth rate and volatility 

Higher demand growth rate generally boosts expected profit. However, demand 

volatility, commonly measured using the standard deviation of demand growth rate and 

used to indicate uncertainty in future market demand, often negatively impacts expected 

profit. Effectively, a limited returns and backup policy is created precisely to reduce 

demand volatility and thus improve retailer profit. Assuming all other conditions remain 

unchanged, expected growth rate and volatility of market demand are respectively assigned 

a value ranging between -50% and 100% and changing in 20% increments, and a value 

ranging between 5% and 95% and changing in 15% increments, respectively, to estimate 

the effects of optimal order quantity and expected profit. Table 2 numerically lists the 

results of sensitivity analysis under various combinations of demand growth rate and 

volatility.  

Fig. 2 shows that optimal order quantity and maximal expected profit are both closely 

and positively linearly related with expected demand growth rate. On the contrary, optimal 

order quantity and maximal expected profit clearly diverge in response to changes in 

demand volatility. Fig. 2 also displays that the increase in demand volatility continuously 

and substantially negatively influences expected profit, regardless of expected growth rate. 

In contrast, as shown on the curve of optimal order quantity, optimal order quantity 

initially increases with increasing volatility, meaning retailers should extend ordering to 

prevent costly losses associated with shortage units in circumstances of increased demand 
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Fig. 1 Variation in expected profits over a given range of order quantities 

Table 1 Comparison of expected profits for a given range of order quantities 
Order quantity Expected profit Order quantity Expected profit 

6,000 383,462 11,823 1,931,763 
6,500 616,526 12,000 1,930,416 
7,000 838,821 12,500 1,912,590 
7,500 1,046,906 13,000 1,875,469 
8,000 1,237,485 13,500 1,821,018 
8,500 1,407,705 14,000 1,751,327 
9,000 1,555,369 14,500 1,668,510 
9,500 1,679,020 15,000 1,574,619 

10,000 1,777,912 15,500 1,471,568 
10,500 1,851,914 16,000 1,361,083 
11,000 1,901,405 16,500 1,244,668 
11,500 1,927,184 17,000 1,123,601 
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Table 2 Optimal order quantities and expected profits 

for various combinations of expected growth rate and demand volatility 
    Q* E[R]*   Q* E[R]* 

-0.50 0.05 7,783 1,535,637 0.50 0.05 12,832 2,531,836 
 0.20 7,908 1,439,905  0.20 13,214 2,360,472 
 0.35 8,170 1,321,601  0.35 13,464 2,043,769 
 0.50 8,241 1,129,713  0.50 13,557 1,668,531 
 0.65 8,208 910,972  0.65 13,505 1,272,634 
 0.80 8,084 680,890  0.80 13,307 871,205 
 0.95 7,877 448,048  0.95 12,967 472,913 

-0.25 0.05 8,819 1,740,104 0.75 0.05 14,541 2,868,939 
 0.20 9,010 1,648,290  0.20 14,989 2,655,285 
 0.35 9,256 1,476,088  0.35 15,262 2,276,412 
 0.50 9,325 1,245,795  0.50 15,371 1,841,245 
 0.65 9,285 989,810  0.65 15,316 1,387,143 
 0.80 9,145 723,899  0.80 15,093 928,937 
 0.95 8,910 456,637  0.95 14,709 475,477 

0.00 0.05 9,994 1,971,796 1.00 0.05 16,479 3,250,901 
 0.20 10,250 1,859,910  0.20 16,997 2,984,747 
 0.35 10,485 1,646,423  0.35 17,305 2,536,191 
 0.50 10,558 1,373,032  0.50 17,433 2,034,055 
 0.65 10,513 1,075,486  0.65 17,373 1,514,596 
 0.80 10,356 769,481  0.80 17,123 992,436 
 0.95 10,090 463,574  0.95 16,689 476,713 

0.25 0.05 11,324 2,234,338     
 0.20 11,643 2,096,422     
 0.35 11,880 1,834,783     
 0.50 11,961 1,513,248     
 0.65 11,912 1,169,282     
 0.80 11,736 818,329     
 0.95 11,435 468,969     

volatility. Later, when volatility reaches around 0.65, optimal order quantity decreases with 

increasing volatility, meaning retailers should curtail ordering to avoid excessive unsold 

units under high volatility. To summarize, high demand volatility generally negatively 

impacts retailer profitability, and in this condition a limited returns and backup policy is 

more helpful to ease risk of demand uncertainty, and thus retailers should negotiate as 

actively as possible with suppliers. 
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Fig. 2 Effect of changes in expected growth rate and volatility of demand 

on optimal order quantity and maximal expected profit 

3.2 Returns and backup inventory limits 

Once supplier and retailer have agreed on the returns and backup policy, returns and 

backup inventory limits are then determined by means of negotiation. To reduce risk, 

retailers should seek to maximize both quantity limits. However, on the other hand, 

suppliers should avoid committing themselves to accepting returns and providing backup 

inventory in such high volumes that too much business risk will be transferred from 

retailers. Therefore, supplier and retailer regularly make a deal in quantity limits by 

compromise. Once again, all other conditions being equal, the returns and backup 

inventory limits are equally assigned a value ranging between zero and 10,000 units, 

changing in increments of 2,000 units, to perform sensitivity analysis, and Table 3 

numerically lists the results of sensitivity analysis for all designated combinations of 

returns and backup inventory limits. Particularly, Table 3 clearly shows that when returns 

and backup inventory limits are zero, meaning the returns and backup policy is 

unavailable, only a profit of $1,557,012 can be expected, which is considerably inferior 

to the maximum of $1,931,763 in the present experiment. Consequently, this study asserts 

that channel coordination can be achieved provided that the returns and backup policy is  
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Table 3 Optimal order quantities and expected profits 

for various combinations of returns and backup inventory limits 
M N c E[R]* M N Q* E[R]* 
0 0 12,019 1,557,012 6,000 0 13,498  1,865,909  
 2,000 11,097 1,782,423  2,000 12,439  1,977,954  
 4,000 10,419 1,908,770  4,000 11,692  2,039,168  
 6,000 10,004 1,965,331  6,000 11,292  2,064,913  
 8,000 9,815 1,985,064  8,000 11,138  2,073,139  
 10,000 9,752 1,990,611  10,000 11,093  2,075,285  

2,000 0 12,527 1,736,884 8,000 0 13,601  1,869,405  
 2,000 11,678 1,911,826  2,000 12,457  1,978,327  
 4,000 11,075 2,002,579  4,000 11,695  2,039,214  
 6,000 10,733 2,039,847  6,000 11,293  2,064,925  
 8,000 10,594 2,051,816  8,000 11,138  2,073,145  
 10,000 10,552 2,054,987  10,000 11,094  2,075,290  

4,000 0 13,087 1,833,917 10,000 0 13,603  1,869,439  
 2,000 12,202 1,967,047  2,000 12,457  1,978,327  
 4,000 11,559 2,035,210  4,000 11,695  2,039,214  
 6,000 11,199 2,062,872  6,000 11,293  2,064,925  
 8,000 11,058 2,071,598  8,000 11,138  2,073,145  
 10,000 11,016 2,073,869  10,000 11,094  2,075,290  

adopted by supplier and retailer of a given perishable item, and thus substantially increase 

retailer profit. 

Fig. 3 clearly shows that changes in returns and backup inventory limits influence 

optimal order quantity and maximal expected profit react differently. Whereas optimal 

order quantity is negatively correlated with both quantity limits, the correlation with 

maximal expected profit is positive. This correlation is easily explained. Presumably, 

smaller quantities are ordered because higher returns and backup inventory limits provide 

the major protection against losses arising from unsold units and shortages. Additionally, 

Fig. 3 also reveals that optimal order quantity and maximal expected profit remain 

virtually unchanged when returns and backup inventory limits exceed about 4,000 and 

6,000 units, respectively. Consequently, in this experiment retailers should only need to 

request a returns limit of 4,000 units and backup inventory limit of 6,000 units. 

3.3 Returns refund and backup premium 

Returns refund and backup premium are expenses that a retailer pays to promise 

suppliers for the benefits of being able to return product and have access to a backup  
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Fig. 3 Effect of changes in returns and backup inventory limits 

on optimal order quantity and maximal expected profit 

inventory. Higher returns refund and lower backup premium are naturally more profitable 

for retailers. Similar to quantity limits, retailer also needs bargaining with supplier over 

returns refund and backup premium. Correspondingly, all other conditions being constant, 

returns refund and backup premium are respectively assigned values ranging between $0 

and $300 and between $0 and $200, changing in increments of $100, respectively, to 

observe the variant effects. Table 4 numerically presents the results of sensitivity analysis 

for all arranged combinations of returns refund and backup charge.  

Fig. 4 clearly demonstrates that both optimal order quantity and maximal expected 

profit increase with returns refund, consistent with expectations. Meantime, Fig. 4 also 

illustrates the discrepancy whereby optimal order quantity continuously grows and 

expected profit constantly declines when a retailer and supplier agree on higher backup 

premiums. In practice, refunds on returns and backup premiums are settled by hard 

negotiation and often depend on the comparative strength and depth of cooperation 

between supplier and retailer. 
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Fig. 4 Effect of changes in returns refund and backup premium 

on optimal order quantity and maximal expected profit 

Table 4 Optimal order quantities and expected profits 

for various combinations of returns refund and backup premium 
r b Q* E[R]* r b Q* E[R]* 
0 0 10,717 1,836,903 200 0 11,538 1,985,430 
 100 10,989 1,760,854  100 11,823 1,931,763 
 200 11,245 1,692,438  200 12,073 1,884,299 

100 0 11,085 1,903,236 300 0 12,055 2,087,468 
 100 11,373 1,837,925  100 12,311 2,045,030 
 200 11,635 1,779,868  200 12,531 2,007,254 

4. Concluding Remarks 

This study extends a typical newsvendor model to incorporate the limited returns and 

backup policy, which has been treated as a useful instrument in fulfilling channel 

coordination. Consequently, as noted previously, limited returns and backup policies have 

been widely considered and even practiced to share risk associated with demand 
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uncertainty and stimulate orders. Such services are especially valuable and necessary for 

perishable items because negligible salvage value often remained on unsold units and there 

existed a risk of losing customers in the event of shortages. Accordingly, this study solves 

the optimal order quantity for retailers of a given perishable item to maximize expected 

profits during the next selling period given a limited returns and backup policy. 

Particularly, this study assumes that market demand during a selling period follows a 

lognormal distribution, which is considered more feasible than a familiar normal 

distribution. Moreover, the Ito process is applied to model stochastic shifts in market 

demand.  

This study develops an effective and practical analytical method for use alongside the 

extended newsvendor model to optimize order quantity so as to maximize expected profit 

during the upcoming selling period. This study applies a numerical experiment to 

demonstrate the workability and accuracy of the developed analytical method. Additionally, 

sensitivity analyses for the crucial model parameters identify some noticeable effects. To 

conclude, the analytical model presented in this study and the experimental findings 

confirm that the limited returns and backup policy assists retailers, who trade in perishable 

items with approximately lognormal demand, to improve their profitability. Moreover, it is 

especially beneficial and worthwhile for retailers of perishable items in case of high demand 

volatility, and additionally is associated with low salvage value and high shortage cost. 
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